Flammable Liquid Handling Precautions

Handling Precautions

  • Avoid accumulation of vapors and to control sources of ignition including:
    • open flames
    • electrical equipment
    • sources of static electricity
  • Accounts of a few of the fires that have occurred in our laboratories may be found in Anecdotes.
  • Pouring flammable liquids can generate static electricity. The development of static electricity is related to the humidity levels in the area. Cold, dry atmospheres are more likely to facilitate static electricity. Bonding or using ground straps for metallic or non-metallic containers can prevent static generation.
  • Whenever possible use plastic or metal containers or safety cans.
  • When working with open containers, use a laboratory fume hood to control the accumulation of flammable vapor.
  • Use bottle carriers for transporting glass containers.
  • Use equipment with spark-free, intrinsically safe induction motors or air motors to avoid producing sparks. These motors must meet National Electric Safety Code (US DOC, 1993) Class 1, Division 2, Group C-D explosion resistance specifications. Many stirrers, Variacs, outlet strips, ovens, heat tape, hot plates and heat guns do not conform to these code requirements.
  • Avoid using equipment with series-wound motors, since they are likely to produce sparks.
  • Do not heat flammable liquids with an open flame. Steam baths, salt and sand baths, oil and wax baths, heating mantles and hot air or nitrogen baths are preferable.
  • Minimize the production of vapors and the associated risk of ignition by flashback. Vapors from flammable liquids are denser than air and tend to sink to the floor level where they can spread over a large area.
  • Electrically bond metal containers when transferring flammable liquids from one to another. Bonding can be direct, as a wire attached to both containers, or indirect, as through a common ground system.
  • When grounding non-metallic containers, contact must be made directly to the liquid, rather than to the container.
  • In the rare circumstance that static cannot be avoided, proceed slowly to give the charge time to disperse or conduct the procedure in an inert atmosphere.

Staff

Stanley Howell
Sr. Program Manager
Chemical Safety
609-258-2711

Steve Elwood
Associate Director for Laboratory Safety
609-258-6271